Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cas Lek Cesk ; 161(7-8): 271-275, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36868836

RESUMEN

The current significant development of human genome/exome sequencing in biomedical research is one of the important paths leading to personalized medicine. However, sequencing of human genetic information generates potentially sensitive and exploitable data, which leads to ethical, legal, and security issues. For this reason, it is necessary to follow several measures when working with these data, applying to their entire life cycle - i.e., acquisition, storage, processing, usage, sharing, archiving, and reuse. In addition, importance of good practice during the whole data life cycle is emphasized by current European trends towards open science and digital transformation. Therefore, the following recommendations have been developed, establishing principles for work with the whole human genome sequences or parts of it in research context. The recommendations are based on two documents published by the Global Alliance for Genomics and Health (GA4GH) and on foreign literature, thus summarizing recent relevant guidance on most aspects of working with human genomic data.


Asunto(s)
Genómica , Medicina de Precisión , Humanos
2.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055070

RESUMEN

Bernard-Soulier syndrome (BSS) is a rare inherited disorder characterized by unusually large platelets, low platelet count, and prolonged bleeding time. BSS is usually inherited in an autosomal recessive (AR) mode of inheritance due to a deficiency of the GPIb-IX-V complex also known as the von Willebrand factor (VWF) receptor. We investigated a family with macrothrombocytopenia, a mild bleeding tendency, slightly lowered platelet aggregation tests, and suspected autosomal dominant (AD) inheritance. We have detected a heterozygous GP1BA likely pathogenic variant, causing monoallelic BSS. A germline GP1BA gene variant (NM_000173:c.98G > A:p.C33Y), segregating with the macrothrombocytopenia, was detected by whole-exome sequencing. In silico analysis of the protein structure of the novel GPIbα variant revealed a potential structural defect, which could impact proper protein folding and subsequent binding to VWF. Flow cytometry, immunoblot, and electron microscopy demonstrated further differences between p.C33Y GP1BA carriers and healthy controls. Here, we provide a detailed insight into its clinical presentation and phenotype. Moreover, the here described case first presents an mBSS patient with two previous ischemic strokes.


Asunto(s)
Alelos , Síndrome de Bernard-Soulier/diagnóstico , Síndrome de Bernard-Soulier/genética , Predisposición Genética a la Enfermedad , Variación Genética , Fenotipo , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Síndrome de Bernard-Soulier/sangre , Plaquetas/metabolismo , Plaquetas/ultraestructura , República Checa , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Humanos , Inmunofenotipificación , Masculino , Linaje , Recuento de Plaquetas , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Trombocitopenia/sangre , Trombocitopenia/diagnóstico
3.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673496

RESUMEN

Superporous poly(2-hydroxyethyl methacrylate-co-2-aminoethyl methacrylate) (P(HEMA-AEMA)) hydrogel scaffolds are designed for in vitro 3D culturing of leukemic B cells. Hydrogel porosity, which influences cell functions and growth, is introduced by adding ammonium oxalate needle-like crystals in the polymerization mixture. To improve cell vitality, cell-adhesive Arg-Gly-Asp-Ser (RGDS) peptide is immobilized on the N-(γ-maleimidobutyryloxy)succinimide-activated P(HEMA-AEMA) hydrogels via reaction of SH with maleimide groups. This modification is especially suitable for the survival of primary chronic lymphocytic leukemia cells (B-CLLs) in 3D cell culture. No other tested stimuli (interleukin-4, CD40 ligand, or shaking) can further improve B-CLL survival or metabolic activity. Both unmodified and RGDS-modified P(HEMA-AEMA) scaffolds serve as a long-term (70 days) 3D culture platforms for HS-5 and M2-10B4 bone marrow stromal cell lines and MEC-1 and HG-3 B-CLL cell lines, although the adherent cells retain their physiological morphologies, preferably on RGDS-modified hydrogels. Moreover, the porosity of hydrogels allows direct cell lysis, followed by efficient DNA isolation from the 3D-cultured cells. P(HEMA-AEMA)-RGDS thus serves as a suitable 3D in vitro leukemia model that enables molecular and metabolic assays and allows imaging of cell morphology, interactions, and migration by confocal microscopy. Such applications can prospectively assist in testing of drugs to treat this frequently recurring or refractory cancer.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hidrogeles/química , Leucemia Linfocítica Crónica de Células B , Andamios del Tejido/química , Línea Celular Tumoral , Humanos , Células Madre Mesenquimatosas , Oligopéptidos , Porosidad , Succinimidas/química
4.
Hum Genome Var ; 6: 12, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30854216

RESUMEN

Different genes related to alveolar stability have been associated with familial interstitial pneumonia (FIP). Here, we report a novel, rare SFTPA1 variant in a family with idiopathic interstitial pneumonia (IIP). We performed whole-exome sequencing on germline DNA samples from four members of one family; three of them showed signs of pulmonary fibrosis (idiopathic interstitial pneumonia) with autosomal-dominant inheritance. A heterozygous single nucleotide variant c.532 G > A in the SFTPA1 gene has been identified. This variant encodes the substitution p.(Val178Met), localized within the carbohydrate recognition domain of surfactant protein A and segregates with the genes causing idiopathic interstitial pneumonia. This rare variant has not been previously reported. We also analyzed the detected sequence variant in the protein structure in silico. The replacement of valine by the larger methionine inside the protein may cause a disruption in the protein structure. The c.532 G > A variant was further validated using Sanger sequencing of the amplicons, confirming the diagnosis in all symptomatic family members. Moreover, this variant was also found by Sanger sequencing in one other symptomatic family member and one young asymptomatic family member. The autosomal-dominant inheritance, the family history of IIP, and the evidence of a mutation occurring in part of the SFTPA1 gene all suggest a novel variant that causes FIP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...